Home Blog Blog Details

How to build an AI agent using Raspberry Pi?

May 27 2025
Ampheo

Inquiry

Global electronic component supplier AMPHEO PTY LTD: Rich inventory for one-stop shopping. Inquire easily, and receive fast, customized solutions and quotes.

QUICK RFQ
ADD TO RFQ LIST
Building an AI agent using a Raspberry Pi is a fun and rewarding project. Here's a step-by-step guide that outlines the general process, from selecting your tools to deploying a functional AI system

Building an AI agent using a Raspberry Pi is a fun and rewarding project. Here's a step-by-step guide that outlines the general process, from selecting your tools to deploying a functional AI system:

How to build an AI agent using Raspberry Pi?


 Step-by-Step Guide to Build an AI Agent with Raspberry Pi

 1. Choose Your Raspberry Pi

Use one of the more powerful models for best results:

 2. Set Up Your Raspberry Pi

  1. Install Raspberry Pi OS using Raspberry Pi Imager

  2. Update packages:

    bash
     
    sudo apt update && sudo apt upgrade -y

 3. Install Python and Required Packages

Install Python (usually preinstalled) and packages like:

bash
 
sudo apt install python3-pip pip3 install numpy scipy pandas scikit-learn matplotlib pip3 install tensorflow keras torch torchvision

For a light footprint, you can use TensorFlow Lite or ONNX Runtime on Pi.


 4. Choose the Type of AI Agent

Decide what kind of AI you want:

Type Examples
Voice Assistant Alexa, Mycroft, Jasper
Computer Vision Object detection, face recognition
Chatbot Simple Q&A bot using LLMs
Autonomous Robot Self-driving robot, line follower
Home Automation Voice/vision-controlled smart home

 5. Example: Build a Voice Assistant AI

Install Mycroft AI (Open-source Voice Assistant)

bash
 
git clone https://github.com/MycroftAI/mycroft-core.git cd mycroft-core bash dev_setup.sh

Once installed:

bash
 
./start-mycroft.sh all

Customize It

  • Add custom “skills” (plugins)

  • Add wake word detection

  • Use GPT-based models (remote or local like llama.cpp for LLMs)


 6. Example: Computer Vision Agent

Install OpenCV

bash
 
sudo apt install python3-opencv

Load a pre-trained model (e.g., MobileNet for object detection)

python
 
import cv2 net = cv2.dnn.readNetFromCaffe('mobilenet.prototxt', 'mobilenet.caffemodel')

Use a Camera Module

  • Connect Pi Camera or USB webcam

  • Capture and process frames using OpenCV


 7. Edge AI with TensorFlow Lite

Download a .tflite model and run:

python
 
import tflite_runtime.interpreter as tflite interpreter = tflite.Interpreter(model_path="model.tflite") interpreter.allocate_tensors()

 8. Optional: Add Web Interface

Use Flask to add a simple web interface to control or view your AI:

bash
 
pip3 install flask

 9. Control Devices or Send Data

  • Use GPIO to control LEDs, motors, relays

  • Send data to a server or dashboard (e.g., MQTT, HTTP, Firebase)


 10. Test and Iterate

  • Optimize models for performance (quantization, pruning)

  • Add exception handling, logging

  • Secure the device (firewall, password protection)


 Bonus: Lightweight LLM on Pi

You can try llama.cpp or TinyLLM with 7B or quantized 3B models for basic chatbot AI.


 Final Tips

  • Use a heatsink or fan for Pi 4/5 if doing heavy processing

  • Use USB SSD for faster I/O

  • Offload heavier processing to cloud if needed (e.g., OpenAI API)

Ampheo